[Syllabus] Physics (322) CUET (UG) 2022

  • Other Laws|Blog|
  • 5 Min Read
  • By Taxmann
  • |
  • Last Updated on 22 September, 2022

syllabus of physics exam CUET

PHYSICS (322)

Note: There will be one Question Paper which will have 50 questions out of which 40 questions need to be attempted.
Checkout Tan Print's Physics for NTA CUET (UG) 2022 which intends to cater to the principal needs of all the students preparing for the Common University Entrance Test (CUET) at the Undergraduate Level in the Physics Domain. This book contains the practice material in a highly student-friendly and thorough manner.

Unit I: Electrostatics

Electric charges and their conservation. Coulomb’s law – force between two point charges, forces between multiple charges; superposition principle, and continuous charge distribution.

Electric field, electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole; torque on a dipole in a uniform electric field.

Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet, and uniformly charged thin spherical shell (field inside and outside).

Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, the electrical potential energy of a system of two point charges, and electric dipoles in an electrostatic field.

Conductors and insulators, free charges, and bound charges inside a conductor.
Dielectrics and electric polarization, capacitors and capacitance, the combination of capacitors in series and in parallel, the capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor, Van de Graaff generator.

Unit II: Current Electricity

Electric current, the flow of electric charges in a metallic conductor, drift velocity and mobility, and their relation with electric current; Ohm’s law, electrical resistance, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity.

Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance.

The internal resistance of a cell, potential difference, and emf of a cell, combination of cells in series and in parallel.

Kirchhoff ’s laws and simple applications. Wheatstone bridge, metre bridge.

Potentiometer – principle, and applications to measure potential difference, and for comparing emf of two cells; measurement of internal resistance of a cell.

Unit III: Magnetic Effects of Current and Magnetism

Concept of the magnetic field, Oersted’s experiment. Biot – Savart law and its application to current carrying circular loop.

Ampere’s law and its applications to infinitely long straight wire, straight and toroidal solenoids. Force on a moving charge in uniform magnetic and electric fields. Cyclotron.

Force on a current-carrying conductor in a uniform magnetic field. The force between two parallel current-carrying conductors – definition of ampere. Torque experienced by a current loop in a magnetic field; moving coil galvanometer – its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment. The magnetic dipole moment of a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements.

Para-, dia- and ferromagnetic substances, with examples. Electromagnets and factors affecting their strengths. Permanent magnets.

Unit IV: Electromagnetic Induction and Alternating Currents

Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents. Self and mutual inductance.

Alternating currents, peak and rms value of alternating current/voltage; reactance and impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits, wattless current. AC generator and transformer.

Unit V: Electromagnetic Waves

Need for displacement current. Electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves.

Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays) including elementary facts about their uses.

Unit VI: Optics

Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection, and its applications, optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lens maker’s formula. Magnification, power of a lens, combination of thin lenses in contact combination of a lens and a mirror. Refraction and dispersion of light through a prism.

Scattering of light–blue colour of the sky and reddish appearance of the sun at sunrise and sunset.

Optical instruments: Human eye, image formation, and accommodation, correction of eye defects (myopia and hypermetropia) using lenses.

Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.

Wave optics: Wavefront and Huygens’ principle, reflection, and refraction of plane wave at a plane surface using wavefronts.

Proof of laws of reflection and refraction using Huygens’ principle.

Interference, Young’s double hole experiment and expression for fringe width, coherent sources, and sustained interference of light.

Diffraction due to a single slit, width of central maximum.

Resolving the power of microscopes and astronomical telescopes. Polarisation, plane polarised light; Brewster’s law, uses of plane polarised light and Polaroids.

Unit VII: Dual Nature of Matter and Radiation

Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation – particle nature of light.

Matter waves – wave nature of particles,  de Broglie relation.  Davisson-Germer experiment (experimental details should be omitted; only the conclusion should be explained.)

Unit VIII: Atoms and Nuclei

Alpha – particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones.

Radioactivity – alpha, beta, and gamma particles/rays, and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number; nuclear fission and fusion.

Unit IX: Electronic Devices

Energy bands in solids (qualitative ideas only), conductors, insulators, and semiconductors; semiconductor diode – I-V characteristics in forward and reverse bias, diode as a rectifier; I-V characteristics of LED, photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.

Unit X: Communication Systems

Elements of a communication system (block diagram only); bandwidth of signals (speech, TV, and digital data); bandwidth of transmission medium. Propagation of electromagnetic waves in the atmosphere, sky, and space wave propagation. Need for modulation. Production and detection of an amplitude-modulated wave.

About NTA

The National Testing Agency (NTA) is established by Ministry of Education, MoE (Earlier known as Ministry of Human Resource Development-MHRD) as an independent/ autonomous, self-reliant and self-sustained premier testing organization.

CUET – Common University Entrance Test

National Testing Agency (NTA) has been entrusted with the responsibility of conducting the Undergraduate entrance tests for all the Central Universities (CUs) for the academic session 2022-2023. CUET will provide a single window opportunity to students to seek admission in any of the Central Universities (CUs) across the country.

Mode of Examination

The CUET (UG) will be conducted in Computer Based Test (CBT) Mode. The aspirants who desire to appear for the test, may refer to the Information Bulletin for admission to Undergraduate programmes of the desired Central Universities (CUs) for admission into the Undergraduate Programmes.

Examination Structure for CUET (UG)

CUET (UG) – 2022 will consist of the following Sections:

  • Section IA – 13 Languages
  • Section IB – 20 Languages
  • Section II – 27 Domain-specific Subjects
  • Section III – General Test

CUET(UG) Domain Subject (Section II) Paper Pattern

Section II – Domain There are 27 Domains specific subjects being offered under this Section. A candidate may choose a maximum of Six (06) Domains as desired by the applicable University/Universities. 40 Questions to be attempted out of 50
    • Input text can be used for MCQ based Questions
    • MCQs based on syllabus given on NTA website
45 Minutes for each Domain Specific Subjects

Disclaimer: The content/information published on the website is only for general information of the user and shall not be construed as legal advice. While the Taxmann has exercised reasonable efforts to ensure the veracity of information/content published, Taxmann shall be under no liability in any manner whatsoever for incorrect information, if any.

Leave a Reply

Your email address will not be published. Required fields are marked *

Everything on Tax and Corporate Laws of India

To subscribe to our weekly newsletter please log in/register on Taxmann.com

Author: Taxmann

Taxmann Publications has a dedicated in-house Research & Editorial Team. This team consists of a team of Chartered Accountants, Company Secretaries, and Lawyers. This team works under the guidance and supervision of editor-in-chief Mr Rakesh Bhargava.

The Research and Editorial Team is responsible for developing reliable and accurate content for the readers. The team follows the six-sigma approach to achieve the benchmark of zero error in its publications and research platforms. The team ensures that the following publication guidelines are thoroughly followed while developing the content:

  • The statutory material is obtained only from the authorized and reliable sources
  • All the latest developments in the judicial and legislative fields are covered
  • Prepare the analytical write-ups on current, controversial, and important issues to help the readers to understand the concept and its implications
  • Every content published by Taxmann is complete, accurate and lucid
  • All evidence-based statements are supported with proper reference to Section, Circular No., Notification No. or citations
  • The golden rules of grammar, style and consistency are thoroughly followed
  • Font and size that's easy to read and remain consistent across all imprint and digital publications are applied